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ABSTRACT
In this experiment we analyze the performance of a C imple-
mentation of the Paxos algorithm for distributed consensus.
Through a series of targeted benchmark we try to gain in-
sight on the dynamical behavior of the system. Our analysis
will test different aspects such as bottlenecks and configu-
ration options that will hopefully help us improve perfor-
mance.

1. MOTIVATION
Paxos[4] is a distributed algorithm for consensus1, it can

be used to provide a total order broadcast primitive to a
network of processes. It tolerates failures and message loss
while delivering values at high rates.
This algorithm is extremely useful for maintaining consis-
tency (for example among servers or among nodes of a dis-
tributed database), and it’s fundamental to core techniques
in fault tolerance, such as state machine replication.
For this reason we put our implementation, libpaxos2, on
the test bench. Our objective is the understanding of the
performances, since ”You cannot control what you cannot
measure”3.

2. PAXOS IN A NUTSHELL
We provide a brief overview of the Paxos algorithm. This

explanation can give an idea of the dynamics of execution
but it’s for sure not enough to understand why the protocol
works and how does it provide such strong properties with
such weak assumptions.

1http://en.wikipedia.org/wiki/Consensus_(comput
er_science)
2http://libpaxos.sourceforge.net
3Tom DeMarco (Software Engineer)

Actors
There are different actors in a Paxos network:
Clients are using Paxos as a reliable communication medium.
Some clients propose values to be delivered, some clients lis-
ten to that broadcast of values. A client may do both.
Learners are ”passive” entities, they monitor the acceptor’s
learn messages and, when a value is unambiguously decided
for an instance, they can deliver that value to a client wait-
ing on top. Paxos ensures that eventually all Learners will
deliver the same values in the same order (so called Atomic
Broadcast4).
Acceptors processes wait for prepare and accept messages
from the leader and, based on their status, may reply with a
promise or send a learn to the learners. For a Paxos network
to be fault-tolerant, acceptors must be able to recover after
a crash. For this reason each acceptor synchronously writes
his status to disk before answering any message.
Proposers receive values from clients. To ensure progress
of execution, a Leader Election service is required by Paxos
to agree on a single Leader-Proposer. Non-Leader Proposers
just forward client values to the current leader.
Leader-Proposer collects client values and submits them
in two phases. During the first phase it sends prepare mes-
sages to acceptors and wait for a majority of promises. Once
the first phase is completed, the instance is declared ready.
During phase 2, the leader sends an accept message to the
acceptors, containing a client value. Proposers know the re-
sult of this operations since they are learners too (or use an
internal learner).

As a performance optimization, a number of phase 1 in-
stances are pre-executed by the leader, i.e. before the clients
start to submit values we can pre-execute phase 1 for in-
stances from 1 to 100. When a client value is submitted, it
can be delivered in only two message delays (an accept and
a learn).
In principle, also phase 2 could be executed in parallel to
achieve better throughput. Since our application has some
strict FIFO requirements, we opt-in for a simpler version
that does not implement this optimization.

Example execution
n acceptor processes are started somewhere, clients A and B
start as proposers, clients X and Z start as learner. Through
the leader election service, A’s proposer is nominated leader.
The leader pre-executes phase 1 for instances from 1 to 100:

4http://en.wikipedia.org/wiki/Atomic broadcast



it can send a single prepare message requesting a promise
from the acceptors. When a majority of acceptors acknowl-
edge that request, the leader knows that instances from 1 to
100 are ready. If clients are not submitting values, all the
actors are idle.
At some point the clients A and B start submitting values v
and v′ to their respective proposers. As soon as the leader
receives v from A or v′ from B’s proposer, it can start phase
2, it picks a ready instance and send an accept.
The acceptors receiving such request decide to accept it, so
they send a learn message to all learners. When a learner
sees that a majority of acceptors accepted the same value
for instance number 1, it is sure that the value is chosen.
Learners deliver value v to clients X and Z.
Since each proposer is a learner too, the leader knows that
instance 1 was closed successfully. It can now start phase 2
for instance 2, v′ will be eventually delivered to X and Z.

3. LITERATURE REVIEW
Paxos has been subject of much studies, the author him-

self has been working on different version of the algorithm,
like Fast Paxos[5], and Cheap Paxos[6].
Google is using Paxos within Chubby[1], they also published
a very interesting engineering perspective [2] describing their
design choices and various implementation-specific optimiza-
tions.
There are some developed methodologies for performance
analysis of distributed system that we find interesting, like
[9], [8] and [3].

4. HYPOTHESES AND EXPERIMENTAL
METHODOLOGY

In the following section we present the research questions
we want to answer and the corresponding experiment we in-
tend to perform.

Up to which point does the system scale?
Submitting more values increases throughput, however at
some point the system will not be able to deliver yet more
values per second. We can easily identify that limit by ob-
serving the delay between the proposal of a value and it’s
delivery.
By building a throughput versus latency graph we want to
verify up to which point the system scales linearly. Dis-
covering this upper limit will also be useful when choosing
parameters for the next experiments.
Setup: We build a special client that proposes values at a
given rate, we will increase this until we hit a limit. The
client can also keep track of turnaround time of submitted
values.

How does the size of values affect the throughput and la-
tency?
Assuming that a client submits values at some fixed rate,
we want to know how the size of those values has impact on
the throughput.
Setup: We fix a benchmark, for example 100k values and
proposal rate of 3000 vps (the rate is under the limit discov-
ered previously). We measure the time required to complete
this task varying the size of values proposed.

How much writing to disk slows down the system?

Some of the actors of a Paxos network require stable stor-
age, libpaxos uses Berkeley DB5 for such purpose. Since this
is likely to be a critical factor for the overall performance,
we test all possible access methods available in BDB: BTree
(current implementation), Queue and Recno (reccomended
for integer keys), and finally no disk synchronization at all.
Setup: We fix a benchmark (number of values, proposal
rate) and we measure the time required to complete with
different BDB settings. The values size will vary randomly
but using a fixed random seed will always produce the same
workload.

What’s the cost of adding more acceptors?
In a Paxos network, we can tolerate n/2− 1 failures, where
n is the number of Acceptor processes. If a majority of them
fails, the broadcast of values halts until some process recov-
ers. We want to assess the cost of having more acceptors.
Setup: We fix a benchmark (number of values, proposal
rate, values size) and we measure the time penalty of hav-
ing more acceptors.

What’s the cost of adding more learners?
In a Paxos network, learners are impersonated by clients
subscribed to the broadcast. We want to assess the cost of
having more learners.
Setup: We fix a benchmark (number of values, proposal
rate, values size) and we measure the time penalty of hav-
ing more learners.

Can we do better?
Using what we learned so far, we try to change some other
library parameter (which was fixed in the previous cases),
for example we lower timeouts or increase the limit on mem-
ory usage. By tuning those parameters, we hope to achieve
better overall performances.
Setup: We design at least two benchmarks, for example
heavy/light load, small/large/mixed packets or combina-
tions of those. We try to change some parameter and com-
pare the result with respect to the default settings.

5. INFRASTRUCTURE
All the tests will be performed within an Apple cluster

comprised by 16 nodes connected trough a GigaBit ethernet
switch. Each node is a RackMac3,1 with two PowerPC G5,
2.3GHz CPUs.
For the experiments described above, we will run each pro-
cess on a different node of the cluster (i.e. a node is a pro-
poser, 5 nodes are acceptors, 5 nodes are learners).
The client and a single proposer run on the same machine
(the proposer is a thread started by the client).
All messages are relied trough UDP multicast with MTU of
around 9kb.

6. EXPERIMENTS
We perform 3 kinds of experiment: Measurements to help

understanding of the system it as it is, Cost assessments
to quantify the impact of some external variable on which
we have no control and Improvements to get better perfor-
mances by varying some inner library parameter.
For those experiments we make use of the following metrics:

5http://www.oracle.com/technology/products/berke
ley-db/index.html



Time to complete
Given a fixed set of values, we measure the time taken from
when the first is submitted to when the last is delivered on
the learner running inside the proposer. The granularity of
those measurements is seconds.
In this benchmarks the clients is able to auto-regulate his
proposal rate: if the queue of values in the proposer be-
comes too long, the client will temporarily stop submitting
new ones.
Despite the reproducibility of the values proposed, even when
the sizes are randomly chosen, there is variability in the re-
sults. We always present the average of at least 5 execution.

Delivery Rate
The average delivery rate can be measured as the number
of values delivered divided by the time taken. If we look at
the network as a queuing system, we imagine that we need
to stay under this threshold to guarantee timely delivery of
values.
The rate alone can be misleading since it does not consider
the quantity of information delivered. It is however a good
comparison metric for two benchmarks using the same values
workload.

Throughput
The quantity of data delivered per second can be estimated
by multiplying the delivery rate by the average value size.
The size of values submitted depends on the application, it
is therefore not always possible to maximize throughput.

Latency
We use a non-standard idea of latency, defined as the time
take to deliver r+ 1 values, where r is a fixed proposal rate.
To understand why this is better than measuring the time
taken by a single value, we must explain how we perform
the measurement.
Since the latency is quantified at a given delivery rate, we
create a special client running on top of the proposer. This
client takes a rate r as argument and once a second will
submit r values to the proposer. Periodically (i.e. every two
seconds), the client submits another value which contains
an unique identifier together with a timestamp. We call this
message a probe.
On the other ”side” of the network, on top of a learner we
create another client that receives the values delivered. This
client is only interested in probes, for those it computes the
time difference and log it for later analysis.
To avoid complex time-synchronization across cluster nodes,
the client/proposer and the client/learner will run on the
same machine. Notice that since there’s no direct communi-
cation between them, this does not represent a bias, in fact
it’s a disadvantage since the two have to share CPU and
network interface.
If we submitted the fixed-size probe before the r values, the
time taken to deliver it would not change at all with a higher
proposal rate or bigger values (assuming that the proposer
is able to deliver all values within a second).
Enqueuing the probe after the r values does not return the
absolute time required to deliver it, rather the time to de-
liver the previous r values.
This is much more useful when for example using big values
and it’s still a reliable metric for systems comparison.

The time taken to deliver a single value can be still esti-
mated as Latency/r, i.e. if the proposer sends 2000 values
per second and the latency is 240000µs, on average a value
is delivered in 120µs.

Ex.1 - Current performance
We start with a really simple test to get an idea of the rate
at which values can be delivered. We create a client that
submits a fixed number of values to the proposer and we
measure the time it takes to have all of them delivered to a
learner.
For this experiment, the network is composed by: 1 Proposer
(Client), 3 Acceptors, 1 Learner (within the proposer).
All Paxos parameters are set to default, Table 1 summa-
rizes the relevant parameters for the client that proposes.
The results for this experiments are presented in Table 2.

Name Value Comment
# of Val. 100000 Number of values proposed
Val. size Random Reproducible sequence of

mixed-size values
Min Val. size 30 byte Minimum size of a value

proposed
Max Val. Size 3 kbyte Maximum size of a value

proposed
Wait interval 10 ms Interval for submitting

next batch of values
Max queue 300 Threshold after which the

client proposer stops sub-
mitting values for a while

Table 1: (Ex.1) Client/proposer parameters.

The system takes around 30 seconds to deliver 100k mixed-
size values. We observe quite some variability in the mea-
surements despite the fact that the sequence of values is
deterministic.

Run Duration (sec) Rate (vps)

1 37 2702.7
2 43 2325.5
3 38 2631.5
4 41 2439.0
5 40 2500.0
6 40 2500.0
7 38 2631.5
8 37 2702.7
9 36 2777.7
10 37 2702.7

Average 38.7 2583.9

Table 2: (Ex.1) Execution time and delivery rates
in values per seconds.

Ex.2 - Impact of instrumentation
Measuring the system by only means of time to complete a
workload is probably too simplistic. There are different run-
time events that may reveal a lot about what’s going on in
the network, for example the number of times the proposer
had to restart from phase 1 because a timeout occurred.
For this reason, we decide to lightly instrument our code,



we create a set of macros to be placed in critical areas of the
learner and proposer to count specific events.
We repeat the previous experiment with event counting en-
abled, this will be useful for both assessing the impact of
our instrumentation and for getting an idea of the counter
values for future comparison.
Table 3 shows the results for this experiment. More details

on the meaning of each counter is presented in Appendix A.
Two interesting fact emerge from this series of test: the first
one is that the system is performing as expected, the few
discrepancies can be traced back to packet loss.
The second fact is that when run the experiment different
times, we get better values after the fifth run. This is unex-
pected as every time we restart completely.
We also conclude using a t-test6 that the instrumentation
does not affect the performance in a significant way.

Ex.3 - Scalability
So far our measurements focused on execution time for a
fixed-size workload, this tells us just the average rate at
which values are delivered. An other essential aspect of the
system is the time it takes for a value to be propagated in
the network.
In this experiment we measure the time interval from whena
set of a values are proposed by a client to when those values
are learned by another client, as previously described in the
Latency section. In different runs we gradually increase the
proposal rate up to the point in which we notice an expo-
nential growth of response time.

Table 4 and Figure 1 present a summary of the results

Figure 1: (Ex.3) Exponential increase of latency
when submitting more than 2500 values per second.

collected. The system seems to be delivering with delays of
less than a millisecond if the proposer sends less than 1000
values per second. From 1000 to 2500 values per seconds,
the delay increases, but the system is still able to deliver in
less than a second.
The system is clearly not able to digest more than 2500 val-
ues per second. When we try to push 3000 the delay of
probes increases continuously, moreover we see the queue of
client values in the proposer growing bigger and bigger, so
we are sure we hit a limit.
Notice that those latency times are aggregated, if the latency

6With 95% confidence, the average difference of those runs
w.r.t the previous is across zero
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Rate Min Max Avg
(vps) (ms)

10 0.4 0.5 0.5
100 0.4 0.5 0.5
500 0.3 0.6 0.4

1000 0.3 0.4 0.3
1500 30.3 637.6 328.1
2000 209.0 3364.2 776.2
2500 436.3 1393.9 898.3
3000 1284.2 8368.4 4967.7

Table 4: (Ex.3) Delivery latency with different de-
livery rates.

is 0.3 ms at 1000 vps, the time to deliver a single value is
around 0.3µs on average.

Experiment 4 - Permanent Storage
In all the previous scenarios, we modeled a somehow ideal
condition for the network, that is we assume no process fail-
ure. In real world situation however, crashes cannot be ig-
nored.
To ensure safety despite failures, the acceptors in the net-
work must log their state information to disk before answer-
ing to any request. In this way if an acceptor crashes and
then recovers, it can restore it’s state, thus ensuring consis-
tency.
For each instance, the acceptor maintain a key-value pair in
the form:

< K, V > = < Id, (Hb, V al, V b) >

where Id is the instance number (int), Hb holds the highest
ballot to which we promised (int), Val is a value if we ac-
cepted one (char[])), and Vb is the ballot corresponding to
that value (int).
When configuring the database, we must consider that (i)
the structure is dynamic but within a fixed limit (UDP mes-
sage size), and (ii) the structure is essentially identified by
an unique integer number.

In our library, this disk synchronization is implemented us-
ing Berkeley DB, a high-performance embedded database[7].
In this experiment we do the following:
1. Try different BSB access methods to ensure we are using
optimal settings. More details on the BDB options are pre-
sented in Appendix B.
2. Turn on disk logging and assess the penalty w.r.t. the
previous measurements.
With the same settings as before and disk synchronization

still turned off, we measure the time taken to deliver a fixed
number of values and then run latency benchmarks. The
data collected is presented in Table 5.
In all delivery rate tests, Hash and Queue seems to always
take a few seconds more than the worst execution times of
Btree and Recno. We focus on those.
Since execution times for Btree and Recno are similar, we
use a t-test to confirm that the latter is effectively doing a
better job7.

7With 95% confidence, the average of the differences is above
zero

BTREE RECNO HASH QUEUE
Time (s) 39.5 37.0 46.7 50.3
Rate (vps) 2531.6 2702.7 2142.9 1986.8
Lat, 1kvps (µs) 326 139,043 431,135 284,015
Lat, 2kvps (µs) 744,345 240,010 1,798,907 4,840,303

Table 5: (Ex.4) Average delivery time for 100k
variable-size values, average delivery latency (at
1000 and 2000 values per seconds) for different BDB
access methods. Each value is the average of 5 exe-
cutions.

Also observing latency, Recno seems better, notice how the
measurement similar at 1 and 2 kvps (as opposite to all other
methods). For the 1kvps Recno is actually able to deliver
values in less than a millisecond (like Btree), but this hap-
pens only after a few seconds of warmup, so the average is
higher.

We discover that turning on disk synchronization has a
catastrophic effect on performances. Using the previously
mentioned event counters we calibrate the timeouts for mes-
sages so that acceptors have the time to complete I/O op-
erations. Timeouts for phase 1 and 2 of the protocol were
previously set to 10ms, now we need to increase them to
respectively 2500ms and 250ms.
The results for this benchmark are presented in Table 6.
With this configuration we cannot push more than a mere
8 values per second! To keep the delivery latency under a
second, we must stay under that limit.
It is clear that disk synchronization is a bottleneck in our
system, if we want to get around this issue we probably need
to find a better way to handle I/O. For the rest of this docu-
ment we focus on tuning of the non crash-tolerant acceptors.

RECNO BTREE
Delivery rate
1 60 59 s
2 63 59 s
3 62 60 s
4 60 59 s
5 62 60 s
Avg 61.4 59.4 s
Rate 8.1 8.4 vps
Latency at 5vps
1 698,632 566,636 µs
2 596,725 663,136 µs
Avg 647,678 614,886 µs

Table 6: (Ex.4) Delivery time for 500 values and av-
erage latency at 5 values per second. Fault-tolerant
configuration.

Experiment 5 - Fault tolerance
In a Paxos network with n acceptors, we can guarantee
progress as long as a majority of them is alive. In other
words we tolerate f failures, where f = (n/2) − 1.
To be more fault-tolerant we may decide to add more accep-
tors. This has of course a cost, for example with 3 acceptors
an instance in phase 1 is declared ready when 2 promises are



received, with 4 or 5 acceptors instead we need to wait for
3 promises.
Increasing n has a direct impact on both network traffic gen-
erated by the acceptors and computation required by pro-
poser and learners. In this experiment we try to measure
this impact.
The network is composed by a proposer, a learner and a
variable number of acceptors. The rest of the parameters
are the same as the previous experiments (i.e. Ex. 1, 2,
3). Figure 2 clearly shows that the delivery rate decreases

Figure 2: (Ex.5) Linear growth of completion time
to deliver 100k values when adding more acceptors.

linearly with respect to the number of acceptors and conse-
quently f .
This is quite good, it means that up to the point where we
measured, we were not able to overload the system. This
is probably strictly related to the capacity of the network
and in fact extracting an estimate of the package loss rate
confirms that the network is still able to deal with the load.
The package loss rate (in Table 7 along with average com-

n 3 5 7 9 11
f 1 2 3 4 5
Avg Time (s) 38.4 42.6 46.6 49.2 52
Delivery rate (vps) 2604 2347 2146 2033 1923
Packet loss 3.5% 5.5% 7.9% 7.4% 8.0%

Table 7: (Ex.5) Time to deliver 100k values when
adding more acceptors and corresponding packet
loss rate estimate.

pletion time and delivery rate) is measured on the number of
learn messages received by the learner (inside the proposer).
If the proposer sent i accept messages, the learner should
receive n ∗ i learn messages.

Experiment 6 - Cost of Learners
While the number of acceptors in a network is a design deci-
sion, the number of learners is more likely to be an external
constraints, i.e. the number of database replicas or number
of clients subscribed to the broadcast.
From an abstract point of view, adding more learners comes
for free, the acceptor still sends a single learn message when
accepting a value. However, at lower level, this message has

to be switched to multiple hosts thus increasing network us-
age.
In the worst case the package loss rate grows and the learn-
ers don’t receive all learn message. So they start to send
synchronization requests to the acceptors and the situation
gets worst.

Figure 3 depicts the time taken to push 100k mixed-size

Figure 3: (Ex.6) The number of acceptors does not
seem to affect the time taken to deliver 100k values.

values with a varying number of learners. Although the vari-
ance of values is quite high, the change don’t seem to affect
the outcome very much. Looking at latency measurements
(Table 8) is even more surprising: the system seems to work
better with more learners. Which is a little counterintuitive.
The network is not immune from the change, in fact to get
those results we have to increase the timeout parameters in
the proposers since most of the phase 1 were expiring. We

Delivery Rate
Learners (s) (vps)
1+0 37.3 2685
1+3 40.0 2500
1+6 39.3 2548
1+8 38.8 2581
1+10 39.8 2516

Latency at 2kvps
Learners (µs)
2+0 1,017,583
2+2 1,348,107
2+3 1,348,107
2+6 710,626
2+8 585,312

Table 8: (Ex.6) Average delivery rate and average
delivery latency with different number of learners.

conclude that the cost of more learners is indeed handled by
the network switch in this case, so from the protocol point
of view they come almost for free.

Experiment 7 - Cost of packet size
Our network uses IP multicast to communicate. Since Paxos
the protocol does not deal explicitly with fragmentation, the
maximum size of a value to be delivered must fit in a UDP
datagram, together with some header we need to attach. In



the current scenario, we can deliver messages up to 9kb (and
Paxos values up to 8kb).
Starting from few bytes and then increasing, we measure the
average delivery rate in a network composed of a proposer,
three acceptors and a learner.
Figure 4 shows the significant drop in delivery rate when
increasing the size of values. However the rate decays grace-
fully, sending big values does not make the system less sta-
ble, as we notice from the small variance of the rightmost
set of values.
A decreasing rate does not imply worst performance in all

Figure 4: (Ex.7) Deacrease of delivery rate when
increasing the size of values.

senses, in fact Figure 5 shows that with larger values we
make a much better use of the network. The proposer can
deliver data at 10MBps, while with very small values it can’t
even reach a tenth of megabyte.
This is an essential aspect to consider when using Paxos as a
delivery service. A client application built on top of the pro-
poser should try to batch values and submit them in chunks
of 8kB to maximize throughput.
This optimization is sometimes made transparent to the
client by implementing it directly in the proposer and learner.
When creating libpaxos we decided not to have this feature
since the application on top was already proposing large val-
ues in most of the cases. However after seeing how it can
improve throughput in the general case, we surely consider
it for the next version.
If the most important metric is latency it’s still preferable

to send small values, as visible from the results in Table 9.

Val.Size Avg time Rate TP Lat. 1kvps
byte s vps MB/s µs

10 23.4 4274 0.04
500 26.2 3817 1.82 369

1000 34.0 2941 2.80
2000 43.8 2283 4.35
4000 55.4 1805 6.89 508,965
8000 77.0 1299 9.91 421,987

mix 500/3000 39.2 2551 4.26
mix 500/8000 61.2 1634 6.62

Table 9: (Ex.7) Average time to deliver 100k fixed-
size values, corresponding rate, throughput. La-
tency when delivering 1000 values per second.

Figure 5: (Ex.7) Increase of throughput when in-
creasing the size of values.

Experiment 8 - Library parameters
There are few compile-time parameters in our library which
may directly affect performances. None of those was prop-
erly tuned and tested previously, they were chosen as ”res-
onable defaults” during development.
Those parameters are:
Pre-execution window (PEW): the number of instances for
which the leader proposer pre-executes phase 1. The current
policy is to start this procedure if at least half of the previ-
ously prepared were consumed (i.e. closed with a value).
Proposer array size (PAS): entries in the in-memory struc-
ture of the proposer. It must be a few times bigger than the
pre-execution window.
Acceptor array size (AAS): entries in the in-memory struc-
ture of the acceptor, it’s used as a cache but all modifications
needs to be write back immediately to permanent storage
too.
Learner array size (LAS): entries in the in-memory struc-
ture of the learner.
Learner lsync interval (LLI): how frequently the learner
checks to be in synchrony with delivered values (i.e. there
are no holes).
The default values used so far are presented in Table 10
together with the other configurations tested in this experi-
ment. We run with a proposer, 3 acceptors and 3 learners.
As shown by the results in Table 11, our choice of default

values is not so bad.
Increasing the PEW (A) increases the workload of the pro-
poser and the probability of phase 1 timeouts. Decreasing
the LLI makes the learner more responsive (B), however if
this change is combined with an increased LAS, the effect is
the opposite (C). As expected, increasing the cache of the
acceptor makes it a little faster (E).

Experiment 9 - Profiling
As a last experiment, we decide to dig deeper into the run-
time behavior of each actor. We use the time profiling anal-
ysis of Shark for this purpose. We profile the execution with
the proposer submitting values as fast as possible.
One thing that we notice in common for proposer, accep-
tor and learner is that most of their time (50% or more) is
spent in system calls, specifically sent and receive operations
on sockets. Unfortunately Shark does not build a tree that



default A B C D E
PEW 50 300 50 50 300 50
PAS 512 1024 512 512 1024 512
AAS 1024 1024 1024 1024 1024 4096
LAS 512 512 512 2048 2048 512
LLI 5 5 2 2 2 5

Table 10: (Ex.8) Configurations of library parame-
ters.

Timeouts Avg.Time Rate

default 10, 10 37.8 2645
A 100, 10 41.4 2415
B 100, 10 37.6 2659
C 10, 10 38.8 2577
D 150, 10 38 2631
E 10, 10 37 2702

Table 11: (Ex.8) Results for different configurations.

attributes the cost of those calls to the callers, rather it cre-
ates separate trees for system and library calls. Therefore is
not given to know from where the expensive calls originate,
this could be interesting especially with respect to the pro-
poser.
This feature quickly allows us to determine that our part of
the code is fine, making it faster would only produce a small
speedup. We should focus instead on better I/O utilization,
this could mean trying different policies or different calls to
achieve better performances.
Another interesting observation regards locking. All the ac-
tors are multithreaded, generally there is a thread that sits
waiting for packets, a thread that periodically wakes up for
timeout checks and so on. In the extreme case the proposer
has 3 threads, plus 2 for the learner that it starts internally
plus at least one client thread. Nevertheless the time spent
in locking is barely visible in the profiling. This should mean
that our locking policy is not ”getting in the way”.
Shark makes easy to observe different threads in isolation,
in the proposer for example, the CPU is used mostly by the
internal learner. This is not unexpected since it receives
quite some traffic from the acceptors and periodically must
traverse a memory structure checking for holes.

7. CONCLUSION
In this set of experiments we tried to analyze the perfor-

mances of libpaxos under different perspectives. In most of
the cases, the system matched well our expectations but we
made some very interesting findings.
When designing an application on top of libpaxos we need to
keep in mind that larger values results in a better through-
put but they have a cost in terms of latency. Adding more
learner or acceptors is fine but may require prior verification
of the underlying network capacity.
An essential parameter is the timeout interval, which needs
to be calibrated carefully, this is made easy by enabling our
event counters.
Discovering problems is also very useful, we can certainly
say that at the moment disk logging is our Achilles’ heel.
Also adding transparent batching of values in the proposer
may increase a lot performances when submitting a lot of

small values.
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APPENDIX
A. EVENT COUNTERS
verify val: proposer receives a value from his own learner
and matches it against the value sent.
delivering: proposer starts phase 2 sending an accept con-
taining a client value.
delivering reserved: proposer starts phase 2 but it’s forced
by the protocol to send a value from some acceptor.
instance stolen: proposer cannot start phase 2 since an-
other value has already been chosen.
p1 timedout: proposer times out while waiting phase 1
promises from acceptors.
p2 timedout: proposer times out while waiting his learner
to deliver the last submitted values.
handle promise: a promise message was received contain-
ing promises for multiple instances.



send prepare: proposer broadcasts a prepare message con-
taining multiple promise requests.
send accept: proposer broadcasts a phase 2 accept mes-
sage.
send lsync: learner broadcasts a message to acceptors ask-
ing to retransmit some value.
handle learn: learner receives a notification from an ac-
ceptor that it accepted some value.
total holes: learner detects that it missed some learn mes-
sage (i.e. it knows chosen values for instance 2 and 3, but
not for 1).

B. BDB ACCESS METHODS
Paxos acceptors in libpaxos use Berkeley DB to implement
permanent storage. We have the option to leave to the DB
to decide when to write something on disk, or we can en-
force disk synchronization, thus achieving fault tolerance.
The access method that we use are:8:
Queue: Data is stored in a queue as fixed-length records.
Each record uses a logical record number as its key. The
page size of the database must be set to a multiple of the
system page size that fits the data.
Recno: Data is stored in either fixed or variable-length
records. Like Queue, Recno records use logical record num-
bers as keys.
BTree:Data is stored in a sorted, balanced tree structure.
Both the key and the data for BTree records can be arbi-
trarily complex.
Hash: similar to BTree but uses hash-table. It exploits less
the locality of data and works better for large working sets.

8
parts from: http://www.oracle.com/technology/documentation/berkeley-

db/db/gsg/C/accessmethods.html


